通过以上三种途径的问答,可以看到,通过向量知识库和在线搜索与大语言模型本身相结合,

即 rag 技术,均为大语言模型优化了生成回答的准确性,对大语言模型的专业领域知识做了补充和

改善。

基于以上的性能评估结果,可以采取以下步骤对向量知识库进行优化。

1增强向量覆盖范围:对于准确率低的查询,分析模型回应错误的原因。如果是由于知识库中

缺少相关信息,可以通过添加更多相关文档和数据来增强向量知识库的覆盖范围。

2优化向量生成算法:重新训练向量生成模型,使用更大的数据集或更复杂的模型架构,以提

高向量的质量和表达能力。

3调整检索算法:如果响应时间较长或返回的向量与查询关联度不高,考虑优化检索算法。例

如,采用更快的检索算法或调整向量匹配逻辑。